
eic-smear overview
EIC task force meeting

Thomas Burton
14th August 2014

1

• What is it?
• ... and what is it not?
• How to use it
• Ask me anything - ʻcause

itʼs your last chance :D

2

3

• C++ code using ROOT

• Builds with configure/Make or CMake

• Stable version 1.0.3 works on Linux, OS X 10.6+

• Single libeicsmear.so

• Think of it as a “tool kit” rather than a standalone
programme

Smearer:
Performs fast

detector
smearing

MC
generator

output

MC tree code:
Builds ROOT tree
containing events -
common format

eic-smear

MC tree code

4

gmc_transMilouRapgap

PEPSI
(Lepto)

DPMjet

Djangoh PYTHIA*

5

Base DIS event
x, Q2, y, W2, ν,

track list

Standard format: macros can analyse
different generators without change

defines
common
format

Event class
for each

generator
adds specific

data

Event classes

(almost) all code is in
“erhic” namespace

*Also some p+p support,
but only basic

Common ASCII format

6

<generator name> EVENT FILE
==
<generator-specific event variable names>
==
Track variable names
==
0 <generator-specific event data>
==
1 KS KF parent child1 childN px py pz E m x y z
2 KS KF parent child1 childN px py pz E m x y z
...
N KS KF parent child1 childN px py pz E m x y z
=============== Event finished ===============
... <repeat event structure>

6-line file header

(Ntracks+3)-line event
https://wiki.bnl.gov/eic/index.php/PYTHIA

https://wiki.bnl.gov/eic/index.php/PYTHIA#
https://wiki.bnl.gov/eic/index.php/PYTHIA#

Building a tree from ASCII file

7

ASCII file in
standard format:
header + tracks

ROOT
file

Event class
defines how to
process header

This is all the end-user has to run

Simple build process in ROOT:

 BuildTree(“file.txt”,
 outDir=”.”,
 nEvents=-1);

Does file I/O,
processes event
header/tracks

~1000 event/sec

Optional
arguments

Yields “file.root” containing a TTree called “EICTree”

(PYTHIA can also support direct ROOT output:
 http://svn.racf.bnl.gov/svn/eic/Generators/pythiaeRHIC/)

http://svn.racf.bnl.gov/svn/eic/Generators/pythiaeRHIC/
http://svn.racf.bnl.gov/svn/eic/Generators/pythiaeRHIC/

Extensibiliy - adding an event
• What if you have a new generator?

‣ Not supported natively

‣ Maybe has its own output format

• Can define your own event class, inheriting
from an eic-smear class

‣ e.g. what if we want to add Sartre support?

8

9

Include eic-smear event header Inherit your class from it.
Provides basic DIS functionality -

Q2, x, y, track list etc.

Implement your own
additional data and methods

Smearing

10

What is(nʼt) it?
• Utility for smearing of MC output

• Itʼs NOT a replacement for Geant!

• But, if you are asking...

11

“Given a (known)
detector performance,

how well can I
measure some physics

observable(s)?”

... then maybe it is for you

“If I need to measure
X with to some
precision, what

detector performance
do I need?”

or

Architecture
• Originally written by Michael Savastio (student)

• Fast - thousands of events/second

• Smears

‣ tracks: p, E, angle, ID

‣ DIS kinematics: x, Q2, y

• Not specific to any generator

‣ Same smearing specification works for all generator
output that follows the common format

12

Output “ParticleMCS” track
is stripped-down version of

normal MC track

(almost) all code is in
“Smear” namespace

The idea

13

(single) quantity,
X, to smear:

E, p, θ, φ

Function defining
σ(X) =

f([E, p, θ, φ])

“Smearer”

“Smearer”

“Smearer”

“Smearer”

“Smearer”

“Detector”

Acceptance
for X in

E, p, θ, φ, pT, pZ

||

++

}
NOT a “physical

detector”:
- Represents the

overall
performance in

measuring a
quantity.

- Cannot “overlap”
detectors

Has no “default behaviour”:
you must define everything

How to use it
• Write a ROOT script:

14

• Smear your ROOT tree:

Smear::Detector createDetector() {
// Resolution in momentum, sigma(P).
// sigma(P) = 0.4%P + 0.3%P^2.
Smear::Device tracking(“P”, “0.004 * P + 0.003 * pow(P, 2)”);

 // Resolution in energy, sigma(E) = 14% * sqrt(E)
 // 3rd argument == 1 -> smear only photons & electrons.
 Smear::Device emcal("E", "0.14 * sqrt(E)", 1);
 // Add devices to a Detector.
 Smear::Detector detector;
 detector.AddDevice(tracking);
 detector.AddDevice(emcal);
 return detector;
}

root[0] SmearTree(createDetector(), “mc.root”, “smeared.root”);

Simple Devices
define σ(X) via

text string

Handles event
loop, file I/O

Output

• Gives a new tree in common MC event format

‣ scripts for MC events work on smeared events

‣ Tree just named “Smeared”

• Only operates on final-state particles...

15

‣ Easy to analyse with TTree “friend” mechanism:

Output

16

Event 1 Q2, x, y Q2, x, y

Particle 1 NULL

Particle 2 NULL

Particle 3 Particle 3

... ...

Particle N Particle N

Event 2 Q2, x, y Q2, x, y

Particle 1 NULL

... ...

MC Smeared If a particle is
1.not final-state* OR
2.not in the detector

➔ store NULL pointer
otherwise store particle
and smear its
properties

‣ Keeps 1-to-1 matching between
tracks in MC and smeared trees

*exception: initial beam particles are copied

Acceptance
• Each Smearer has an associated Acceptance

‣ Acceptance is made of one or more “Zones”

‣ Each Zone defines (p, E, theta, phi, ...) region

‣ Zones neednʼt be contiguous

‣ Particles are only accepted if they match at least one
Zone

• By default accepts everything

• Can also define other acceptance criteria

‣ “Genre” - hadronic, electromagnetic

‣ Charge - neutral, charged
17

Output - important note

18

‣Different quantities may therefore have different
acceptance e.g. smear

‣ E for -4 < η < 4

‣ p for -3 < η < 3

‣Only smears quantities for which particle is in acceptance

‣ store zeros for quantities if particle outside acceptance

‣ e.g. above, for particle at η = 3.5

‣ E will be smeared

‣ p will store zero

Other “Smearers”

• Extensible to more specialised devices

‣ “Bremmstrahlung” class mimics
electron energy loss by photon
emission

‣ Particle ID classes allow definition of a
particle-misidentification matrix e.g.
HERMES RICH

19

‣ Generic “tracker” class, implementing

intrinsic resolution

multiple scattering

20

Other “Smearers”

Extensibility - define a smearer

21

Hadron energy response in
electromagnetic calorimeter

Access and documentation
Read about it:
https://wiki.bnl.gov/eic/index.php/Eic-smear + links

Get it:
Just run directly from EIC nodes OR

Download tarballs from the above page + follow build instructions OR

svn checkout http://svn.racf.bnl.gov/svn/eic/Utilities/eic-smear/trunk eic-smear

Run it:
root[0] gSystem->Load(“/path/to/libeicsmear”);

This is done automatically if you run the EIC logon scripts:

https://wiki.bnl.gov/eic/index.php/Computing

22

https://wiki.bnl.gov/eic/index.php/Eic-smear
https://wiki.bnl.gov/eic/index.php/Eic-smear
https://svn.racf.bnl.gov/svn/eic/Utilities/eic-smear/trunk/
https://svn.racf.bnl.gov/svn/eic/Utilities/eic-smear/trunk/
https://wiki.bnl.gov/eic/index.php/Computing
https://wiki.bnl.gov/eic/index.php/Computing

